

Exploratory Analysis on Music

Genre Classification

Name PeopleSoft ID

Nirupam Bidikar 1878058

Pranav Saineni 1884587

Rahul Raj Mogili 1900425

Final Project Report

COSC 6368: Artificial Intelligence

University of Houston

Department of Computer Science

1. SURVEY

Domain - Deep Learning:

Deep learning is a subset of machine learning where algorithms that have multiple layers which

increasingly extract higher-level features from the raw input. For instance, in image processing,

lower layers might determine edges, whereas higher layers might determine digits or faces. Deep

learning architectures like deep neural networks, recurrent neural networks, and convolutional

neural network are being implemented in fields such a computer vision for automatic face

recognition, natural language processing for Speech Recognition, drug design for drug properties

description, medical image analysis for accelerating MRI image processing, and many other fields

where they have produced results comparable and in some cases surpassing results produced by

humans. In our project we try to map genres to audio clips using Deep Learning and Bayesian

Learning techniques.

Backpropagation:

It is an algorithm used in training feedforward neural networks for supervised learning. The

process of backpropagation takes in the final decisions of a model’s training pass, and then it

determines the errors in these decisions. The errors are calculated by contrasting the outputs of the

network and the expected outputs of the network. Once the errors in the network’s decisions have

been calculated, this information is transported back (backpropagated) through the network and

the parameters of the network are altered along the way. The method that is used to update the

weights of the network is based on the chain-rule.

Figure 1: An overview of Backpropagation

Bayes by Backpropagation:

Our goal in training a neural network is to find an optimal point estimate for the weights which

best represents the data. Networks trained using this way performs well when we have large

samples of data and fails to express uncertainty in small samples of data, leading to overconfident

decisions. To overcome this drawback, we use Bayesian learning to neural networks. Bayesian

inference for neural networks calculates the posterior distribution of the weights given the training

data, P(w|D). Each possible configuration of the weights, weighted according to the posterior

distribution, makes a prediction about the unknown label given the test data. To make it easier and

to have a better understanding of the distribution at each weight, we will use a Gaussian

distribution.

Figure 2 Representation of network using Bayes by Backprop. Taken from [3]]

Exact Bayesian inference on the parameters is not tractable, to address this problem we used the

“Bayes by Backprop” algorithm[1] which derives a variational approximation to the true posterior

and as we are using a Bayesian for the network, we have to define a probability distribution over

a set of distributions which is also known as a prior.

• Prior Probability: the prior probability of a random event or an uncertain proposition is the

unconditional probability that is assigned before any relevant evidence is considered. Since

we are using a Bayesian for the network, we need to define a Prior over the weights. The

prior over the weights vector simply corresponds to the product of the individual

Gaussians.

logP(w)=∑ilogN(wi| 0,σp
2)

Where N = arbitrarily sample size

w = Weight

σ2 = variance

• Likelihood: Although a likelihood function might look just like a probability density

function, it is fundamentally different. A probability density function is a function of your

data point, and it will tell you how likely it is that certain data points appear. A likelihood

function, on the other hand, takes the data set as a given, and represents the likeliness of

different parameters for your distribution. It is the probability of the evidence given the

parameters. We will use the softmax to define our likelihood. (P(Di | w)).

• Posterior Probability: the posterior probability of a random event or an uncertain

proposition is the conditional probability that is assigned after the relevant evidence or

background is considered. It is the probability of the parameter θ given the evidence. The

variational posterior on the weights is centered on the mean (μ) and has variance (σ2)

logq(w | θ)=∑ilogN(wi | μ,σ2)

• Loss: Now that we have defined our likelihood, the prior, annzd the variational posterior, we are

now able to build our combined loss function as

F(Di,θ)=1/M(logq(w | θ)−logP(w))−logP(Di | w)

we need to ensure that the variance is a non-negative, which we will so by using the softplus

function to express variance in terms of an unconstrained parameter

Logistic Regression:

The logistic regression is used when the data is categorical. It is used to describe data and to explain

the relationship between one dependent binary variable and one or more nominal, ordinal, interval

or ratio-level independent variables. We can also set a decision boundary in logistic regression

which acts like a threshold. Based on this threshold, the obtained estimated probability is classified

into classes. A cost function cannot be used in logistic regression as there is a chance the gradient

descent will converge into global minimum.

The logistic regression uses the sigmoid function and was developed by statisticians to describe

properties of population growth in ecology and maxing out at the carrying capacity of the

environment. It looks like S-shaped curve taking any real valued number and mapping it between

0 and 1 but never exactly at those limits like the shown in Figure 3.

Figure 3: Logistic function (sigmoid)

An example of logistic regression equation looks like,

Where P is predicted output, a is the bias or intercept term and b is the coefficient for a single

input value (X).

Random Forest Classifier:

There are several classification algorithms such as logistic regression, support vector machines,

decision trees, naïve Bayes classifier but in the hierarchy of classifiers is topped by random forest

classifier. Random Forest algorithm is a supervised classification algorithm. It consists of large

number of individual decision trees and each individual tree spits out a class prediction and the

class with most votes becomes our model prediction. In other words, we can say, many

uncorrelated trees operating as a committee outperform any of the individual constituent models.

Alternatively, the random forest can apply weight concept for considering the impact of result

from any decision tree. The tree with high error rate is given low weight values and vice versa.

This would make the decision impact of trees with low error rate. Overfitting is one critical

problem that may make the results worse but if there enough trees in the forest, the classifier won’t

overfit the model. Random forest can also handle missing values. Basic parameters to Random

Forest Classifier can be total number of trees to be generated and decision tree related parameters

like minimum split, split criteria etc.

Figure 4: Concept of RFC (Image taken from Google)

Convolutional Neural Network:

Typical neural networks pass signals along the input-output channel in a single direction, without

allowing signals to loop back into the network. This is called a forward feed. While forward feed

networks were successfully employed for image and text recognition, it required all neurons to be

connected, resulting in an overly complex network structure.

The convolutional neural network (CNN) is a Deep Learning algorithm which can take in an input

image, assign importance to various elements in the image and provide differentiation from one

another. The pre-processing required in a CNN is lower as compared to other classification

algorithms. A CNN can successfully capture the Spatial and Temporal dependencies in an image

through the application of relevant filters. It performs a better fitting to the image dataset due to

the reduction in the number of parameters involved and reusability of weights. Hence, the network

can be trained to understand the sophistication of an image better.

The CNN takes an image, pass it through a series of convolutional, nonlinear, pooling and fully

connected layers, and get an output. The output can be a single class or a probability of classes that

best describes the image.

Figure 5: Concept of CNN. (Image taken from Google)

Support Vector Machine-

Support Vector Machine (SVM) is a supervised machine learning algorithm which can be used for both

classification and regression challenges. In this project we use it for classification. In this model, we plot

each data item as a point in n-dimensional space (where n is number of features you have) with

the value of each feature being the value of a particular coordinate. Then, we perform classification

by finding the hyper-plane that differentiates the two classes very well. The learning of the

hyperplane in linear SVM is done by transforming the problem using some linear algebra. This is where

the kernel plays role.

For linear kernel the equation for prediction for a new input using the dot product between the

input (x) and each support vector (xi) is calculated as follows:

f(x) = B(0) + sum(ai * (x,xi))

Figure 6: Misclassification due to lower regularization values Figure 7: Higher regularization values leads to this graph

2. DEVELOPMENT OF THE IDEA

2.1 Dataset:

To conduct the exploratory analysis, we use the GTZAN[4] and FMA[5] datasets. A brief

description about the datasets is given below.

The Z dataset consists of 1000 audio tracks each 30 seconds long. It contains 10 genres, each

represented by 100 tracks. The tracks are all 22050 Hz monophonic 16-bit audio files in .wav

format. We used the liborsa library to extract features such as Mel Frequency Cepstral Coefficient

(MFCC), Chromagram, Zero Crossing Rate, Root Mean Square Error, Spectral Rolloff, Spectral

Bandwidth and Spectral Centroid. It also consists on image data of the Spectrogram for each track.

A spectrogram is a visual representation of the spectrum of frequencies of a signal as it varies with

time.

Figure 6 Spectrogram

The FMA dataset contains extracted features for 106,747 songs. This dataset contains track

metadata, genres list, feature sets for all the songs and other metadata files that includes songs data

taken from Spotify. The Features file consists of the common features extracted from 30 second

audio clips using the librosa API in python. This will give us features such as MFCC and

Chromagram. MFCC is widely used in speech analysis which relates with timbre and music

instruments. Chromagram gives the information about the 12 pitch cases of the audio clip. MFCC

consists of 140 features which are all being considered in this study.

2.2 Preprocessing:

We first begin with the track metadata. This consists mappings between the track and its respective

genre. Since a track can have multiple genres, we removed such entries to reduce the complexity

of the dataset. We then trim the features dataset by selecting the MFCC feature. There have been

studies [2] showing that MFCC is better suited for predicting the genre which is why we selected

it. We then prune all those tracks from earlier which had multiple genres and remove their data

from the feature set.

We then scale the data and encode the labels and prepare the data for training our models. While

performing scaling, we used Normalization for the FMA dataset and Standard Scaling for the

GTZAN dataset to obtain best possible fitting models.

3. IMPLEMENTATION

3.1 Classical Models:

To get an initial impression of the dataset, we begin by testing it with classical models used in

classification problems. We used multinomial logistic regression with a variety of solvers like

“newton-cg”, “lbfgs”; “SVC” model from SVM and tested it with the MFCC features from the

datasets. The accuracy results are elaborated in terms of a confusion matrix and shown below.

We can observe from the matrix that electronic and experimental are being mismatched with each

other. The values of the features must be quite similar for the model to inaccurately predict one of

them as the other class. Same is the case with experimental and rock, fold and rock. The most

accurate genre predicted by the model.

 Figure 7: Confusion matrix of Logistic Regression – newton-cg (FMA)

For the GTZAN dataset using the Newton-cg solver, we were able to achieve a test accuracy around 71%.

We can clearly see the classifier correctly predicted most of the classes by looking at the diagonal elements

with few errors across the board. This might have occurred due the concise nature of the dataset and the

features at play in that set. LBFGS also ended up having nearly the same confusion matrix. SVC performed

the best of all the three algorithms with respect to the training accuracy but a lower test accuracy showing

the model did not learn the patterns well.

Figure 8: Confusion matrix of Logistic Regression – GTZAN

Table 1: Results with FMA dataset

Table 2: Results with GTZAN dataset

As we can see, we have obtained a better result than the previous study [2]. The author concluded

that one of the reasons for low accuracy was the size of the dataset. With our ~40,000 training

samples, we can say that given more training data the accuracy increases.

3.2 Random Forest Classifier:

Following the results on classical models, we proceeded to experiment with Random Forest

Classifier. We once again see that the classifier benefits with a larger dataset giving better accuracy

with a greater number of samples. We can also see the increase in accuracy with the increase in

levels. We chose to go with 12 levels as we start getting diminishing returns with huge

computational overhead due to which we decided to stop at 12 levels and calculate the accuracy

scores for the model at that level.

Method used Accuracy (Train) Accuracy (Test)

Newton-cg 59.1% 54.8%

lbfgs 59.1% 55.9%

SVC 73.1% 59.6%

Method used Accuracy (Train) Accuracy (Test)

Newton-cg 70.1% 61.5%

lbfgs 70.1% 61.5%

SVC 77.3% 64%

Figure 9: Plot for GTZAN dataset

As we see from Figure 9, there is a decline in accuracy while the classifier is being trained on the

GTZAN dataset. This might be due to slight overfitting occurring but then the model recovers and

plateaus at a 65% accuracy. For the FMA dataset Figure 10 we a steady increase in accuracy up to

levels 10 and then we reach the point of diminishing returns.

Figure 10: Depth vs Score FMA dataset Figure 10: Plot for FMA dataset

3.3 Convolutional Neural Network:

Given the excellent performance of CNNs in the field of Computer Vision and pattern recognition,

we thought of applying it to the music domain to find such patterns and predict the genre of an

audio clip given to it. We applied these to both the datasets and found relatively similar results

and trends. We had to choose different network structures for each dataset to better tune the model

for that specific data.

Structure of the Network:

Network for FMA dataset

Input nodes: 140

Hidden Layers: 2 (20 nodes each)

 Activation Function: ‘ReLU’

Output Layer: 1 layer (16 nodes)

 Activation function: ‘softmax’

Optimizer: ‘adam’

Learning rate: default

Loss function: ‘sparse categorical cross entropy’

Network for GTZAN dataset

Input nodes: 26

Hidden Layers: 3 (256 nodes, 128 nodes and 64 nodes respectively)

 Activation Function: ‘ReLU’

Output Layer: 1 layer (10 nodes)

 Activation function: ‘softmax’

Optimizer: ‘adam’

Learning rate: default

Loss function: ‘sparse categorical cross entropy’

The networks were built using the Tensorflow library with Keras acting as a high-level wrapper

over it to simplify construction of models. We test the models with various hyper parameters, and

we have demonstrated in the report the combination which has fared the best among those.

 While training both the datasets, we observe commonalities in certain trends – loss is minimized (steady

decline) and the increase in accuracy over number of epochs. Again due to the nature of the dataset we see

the model trained on GTZAN achieve higher train accuracy but both the models have relatively the same

test accuracy.

 Figure 11: Accuracy plot for CNN trained on FMA Figure 12: Loss plot for CNN trained on FMA

Figure 13: Accuracy plot for CNN trained on GTZAN Figure 14: Accuracy plot for CNN trained on GTZAN

Overall Performance Comparison of Classical Models and Neural Network

[FMA, GTZAN]

Here we can see that traditional classification algorithms perform better than the CNN as Neural

Networks are well suited for image classification applications. Here the data being highly complex and

there being a lot of similarities among genres, we can see how it my negatively affect the performance of

the network.

Bayes by Backpropagation:

Our main idea was to see how Bayesian Neural Networks compare with a traditional neural

network in classifying problems. By inducing uncertainty in the model, it is better equipped to

perform well in predicting unseen data. We tested out this concept on the standard MNIST dataset

to classify the digits. This gave us promising results and is shown in the plot below.

Figure 12: Train and Test scores (FMA)

Figure 14: CNN accuracy on MNIST
Figure 15: Bayes by Backprop accuracy on MNIST

(epoch vs accuracy)

Figure 11: Train and Test scores (GTZAN)

We started observing irregular patterns when we applied Bayes by backprop on the music dataset.

Using GTZAN set, we could not get a model with a uniform trend on accuracy which goes on to

say the model was not learning. The same happened with FMA dataset; again, we could not get a

uniform learning trend on models even with modifying the hyperparameters and standard

deviations of the distribution of weights. The visualization for the observation is shown below.

When compared with traditional networks, we expected this model to perform better given the

uncertainty induction.

4. CONCLUSION

During the inception of this project, it was our understanding that inducing uncertainty into the

model would help in better prediction. Training models on both datasets gave us inconsistent

results and extremely low accuracies within the range of 17 – 35%. Considering the performance

of other models on the same datasets, we suspect that this approach (Bayes by BackPropagation)

might not be suited for analysis of such data. Tweaking CNNs and using timeseries data to train a

RNN would be some of the better approaches to tackle this problem.

In future, we have our sights set on using Bayes by BackProp on Spectogram data as it again brings

it down to an image classification problem and we are curious to see how it turns out. We would

like to further investigate the features of audio clips and see how other features impact the genre

and accordingly build the models.

Figure 16: Bayes by BackProp using GTZAN Figure 17: Loss plot by BackProp on GTZAN

5. REFERENCES

[1] Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty

in neural networks. arXiv preprint arXiv:1505.05424.

[2] Zhang, S., Gu, H., & Li, R. (2019). MUSIC GENRE CLASSIFICATION: NEAR-

REALTIME VS SEQUENTIAL APPROACH.

[3] A manual for Bayes by Backprop https://gluon.mxnet.io/chapter18_variational-methods-

and-uncertainty/bayes-by-backprop.html

[4] Tzanetakis, G., & Cook, P. (2002). Musical genre classification of audio signals. IEEE

Transactions on speech and audio processing, 10(5), 293-302.

[5] FMA dataset https://github.com/mdeff/fma

[6] PyTorch Library for Bayesian Neural Networks https://github.com/piEsposito/blitz-

bayesian-deep-learning

[7] Project Code https://github.com/nirupam52/COSC-6368-project-

https://github.com/mdeff/fma
https://github.com/piEsposito/blitz-bayesian-deep-learning
https://github.com/piEsposito/blitz-bayesian-deep-learning
https://github.com/nirupam52/COSC-6368-project-

