
IPFS ON AWS

Rahul Raj Mogili - 1900425
Nirupam Bidikar - 1878058

Pranav Saineni - 1884587 

1



Overview

● Approaches

● Goals we achieved 

● Setbacks

● Future Prospects 

● References

2



Approach-1

● Creating a private IPFS network

● Using HTTP API exposed by nodes. 

● Structure of the base API 

http://<node-ip>/api/v0/<functio
n>

● Can perform all the commands carried 

out in the CLI.

● Insecure as anybody with the IP can 

interact with the node.
3



Approach -1 contd

● Files added in this approach would 
have to be manually replicated 
across network.

● Can be automated through scripts 
● Manual replication is complicated 

as we have to deal with hashes.

4



HTTP API

● It can be accessed using a simple curl command.

● Supports all the features and commands to interact with the node.

● Difficult to fetch file metadata from a distributed network.

● An example shown below.

5



Approach - 2

● Using IPFS Cluster service 

● Creating a private cluster of running 

IPFS nodes using the same secret key.

● Has a pinning service which saves and 

keeps track of files and peers.

● Data added to cluster is automatically 

and recursively pinned.

6



IPFS Cluster Service

● Bootstraps IPFS nodes to form a cluster.

● Responsible for data replication across 

nodes.

● Updates changes in data across peers.

● Gives manual control for pinning data.

● Gives an interface to track files and check 

instances which have it pinned onto local 

storage.

● Provides many other diagnostic features for 

the network

7



Cluster 

● Creating and adding a file to the cluster.

● Every file generates a unique hash and if the 

same file is uploaded it wont change the 

hash.

● We can see all the files in the network and 

which peers have it pinned in their storage.

8



Pinning

● Pinning is the mechanism that allows 

you to tell ipfs to always keep a given 

object in local storage.

● We can access files in the cluster using 

cat or get.

● IPFS has their own implementation of 

a unix like file system (mutable file 

system).

● IPFS Follows content addressing - It 

means that the file is represented by 

it’s contents and not just it’s name.

9



File Metadata work around

● Everything in IPFS is a “block”.

● File metadata can be obtained by putting files in a folder and adding the folder to IPFS

10



Goals achieved 

● Deployed an IPFS network on cloud using EC2 instances and VPC
● Creation of a private network with restricted access.
● File sharing among nodes.
● Configured and set up of the HTTP API
● Data Replication across all nodes.

11



Setbacks

● IPFSHTTP API is still in alpha and the features required are in development.

● IPFSHTTP API does not function properly with the cluster but works fine with 

individual nodes

● Browser Access/web interface was not possible due to the above reason.

● File metadata is accessible only when it is within a folder.

● Writing a GraphQL spec was difficult as the API was not structured as traditional 

REST APIs.

12



Future Prospects

● Implementation of a web interface 
● Restful APIs in place of standard RPC APIs for node interaction.
● The ability to run cluster service and use the API at the same time 
● Developing a high level library to simplify interactions with IPFS

13



References 

● https://docs.ipfs.io/reference/api/http/
● https://www.npmjs.com/package/ipfs-cluster-api
● https://github.com/ipfs/ipfs-cluster
● https://en.wikipedia.org/wiki/InterPlanetary_File_System
● https://github.com/ipfs/go-ipfs

14

https://docs.ipfs.io/reference/api/http/
https://www.npmjs.com/package/ipfs-cluster-api
https://github.com/ipfs/ipfs-cluster
https://en.wikipedia.org/wiki/InterPlanetary_File_System
https://github.com/ipfs/go-ipfs


Questions?

15


