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Survey

Evolutionary Algorithms

Evolutionary algorithms are a family of biologically inspired algorithms that are
generally used for optimization. Using this algorithm, we look for the best or optimal
solution to a problem. This is heavily inspired from Darwin’s "survival of the fittest"
idea.

All evolutionary algorithms have an initialization step, an evaluation step, a termi-
nation step, a selection step and a variation step.

There are a few different evolutionary algorithms like genetic algorithm, simulated
annealing, steady state genetic algorithm, etc.

Genetic Algorithms (GA)

Genetic algorithms [2] are the most popular type of evolutionary algorithms which
are generally used for search techniques or optimization.

The paper by Messa and Lybanon [3] concluded that genetic algorithms form a
basis for another method for curve fitting and minor changes in the parameter and
strategies could help achieve a fair degree of accuracy. It also stated that when we
have little to no knowledge, experimentation with genetic algorithm is required to
achieve high accuracy

The paper by M. Gulsen et al. [4] concluded that genetic algorithms are robust,
search and problem parameters can easily be altered to make GA approach to curve
fitting viable and versatile. They also say that the computational effort to reach
the accurate solution is dependent on the complexity of the function that is fitted
to the data

A population of candidate solutions are generated by GA instead of generating a
sequence of candidate solutions. A population is a group of solutions to a problem
at any step. After that, the five steps of evolution are carried out to find the desired
solutions to a problem.
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Simple Genetic Algorithm (SGA)

The simple genetic algorithm works in the following way:

i. In the initialization step, a population of random solutions are generated. Each
candidate solution has a set of parameters, called chromosomes, that define the
solution to the problem.

ii. In the evaluation step, a fitness of the population is calculated. The fitness
value (or score) is a number that measures how good a solution is based on the
problem that is being solved.

iii. Once we obtain the fitness value, we check if any of the termination criteria is
met. A termination criteria could be a number of things - if we have achieved
our goal, if our solution isn’t improving anymore, if we have reached a maximum
number of generations. If the termination criteria is not met, we move on to
the selection step.

iv. In the selection step, we choose a sample from the population to create new
solutions which are called offsprings. This selection is generally based on the
fitness score of the population.

v. In the variation step, the offsprings are created from the parent population using
several operators which are discussed in detail later. The least fit populations
in the evaluation step are replaced with these new offsprings and this loop
continues until the termination criteria is met.

There are several genetic operators like crossover, mutation and replication.

• Crossover: Crossover is a technique to form an offspring using genetic infor-
mation from two parents. The choice of which genetic information comes from
which parent is based on a crossover mask.

For example, if the parent A has the chromosome 11101001000 and parent B
has the chromosome 00001010101 and our crossover mask is 11111000000, the
two offsprings will have chromosomes 11101010101 and 00001001000. In the
example, the first 5 bits from parent A remains the same for the first offspring
while the last 6 bits are taken from parent B, according to the crossover mask.
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• Mutation: In mutation, a bit is randomly chosen in the solution (assuming
a uniform distribution in the chromosome) and flipped.

• Replication: Replication is the process of replicating offsprings from parents
without changing anything.

Steady State Genetic Algorithm (SSGA)

Another type of genetic algorithm is the steady state genetic algorithm also known
as SSGA [7]. Unlike a regular genetic algorithm, selection does not replace the
individuals in the population. Instead of adding the children of the selected parents
into the next generation, we select the best individuals out of the two parents and
two children are added back into the population. The population size in SSGA
remains constant.

Linear Regression

Regression is a method of modelling a target value based on predictors. Regression
differs from case to case based on the number of independent variables and how
each of those variables correlate to each other. Simple linear regressions is a type
of regression where the number of independent variables is one and there is a linear
relationship between the independent and dependent variable.

Figure 1: Linear regression

Source: Wikipedia

The red line in the above graph is referred to as the best fit straight line. The line
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can be modelled based on the linear equation shown below:

y = c+mx

Cost function: The cost function helps us to figure out the best value for c and m
which provides the best fit line for our data points.

Since we want the best or optimal value for m and c, we convert this search problem
into a minimization problem where we would like to minimize the error between the
predicted value and the actual value.

minimize
1

n

n∑
i=1

(predi − yi)2

J =
1

n

n∑
i=1

(predi − yi)2

The difference between the predicted values and ground truth measures the error
difference. We square the error difference and sum over all data points and divide
that value by the total number of data points. This provides the average squared
error over all the data points also known as the Mean Squared Error(MSE) function.

Gradient Descent: Gradient descent is a method to update c and m to reduce
the cost function. The concept behind is that we start with some value for c and m
and iteratively change these values to reduce the cost. In order to update c and m
we take gradient from cost function. To find these we take partial derivatives with
respect to c and m.

J =
1

n

n∑
i=1

(predi − yi)2

J =
1

n

n∑
i=1

(c+mxi − yi)2

δJ

δc
=

2

n

n∑
i=1

(c+mxi − yi)⇒
δJ

δc
=

2

n

n∑
i=1

(predi − yi)

δJ

δm
=

2

n

n∑
i=1

(c+mxi − yi) · xi ⇒
δJ

δm
=

2

n

n∑
i=1

(predi − yi) · xi

4



c = c− α · 2
n

n∑
i=1

(predi − yi)

m = m− α · 2
n

n∑
i=1

(predi − yi) · xi

α is the learning rate which we specify. Smaller value for α gets you closer to minima
but takes more time to reach while larger value for alpha can lessen the time but
could overshoot the minima.

Simulated Annealing

Simulated annealing is a local search meta-heuristic which provides us a mean to
escape local optima by using hill climbing moves to find the global optima. Basically
it is a combination of hill climbing and random walk. We use hill climb to find
the global maximum and random walk to increase the efficiency to find the global
optimum value.

P = exp

(
−E1 − E0

T

)

where E1 is new cost, E0 is old cost and T is temperature.

The acceptance probability helps us to compare the new cost with old cost. It gets
smaller if the new solution gets worse than the old one. If the randomly generated
value is greater than the acceptance probability we will change our old cost to new
one.

Tsoukalas and Fragiadakis [8] applied multiple linear regression and genetic algo-
rithm model to predict occupational risk in the shipbuilding industry. The result
from the LR model was fed to GA and possible solutions were generated and eval-
uated using their fitness functions. Their model proved to be a feasible way to
estimate the risk factor and was an inspiration for this project idea.
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Datasets

The datasets used in this paper are the Boston House prices [1] dataset and the
diabetes dataset taken from Scikit-Learn [6]. For preprocessing, the data was nor-
malized using the MinMaxScaler function.

The Idea and Experimentation

Linear regression can be a good tool to solve estimation problems by trying to fit
a line through given data. It does this by minimizing residual error. Since we can
express a linear regression as an optimization problem, we decided to see if genetic
algorithms can solve this problem too.

Using the principles of genetic algorithms, we generate a population of solutions.
Here each solution is a list of coefficients matching the input size of the dataset.
Next we evaluate this population using our fitness function which is a formula based
implementation of regression using Least squares method. Best individuals are se-
lected and crossover, mutation operations are applied to generate a new population.

We tried 4 methods to boost performance of our model which are described below.
Comparison with regular linear regression is also shown. All the graphs shown below
have been plotted with the validation set.

Simple Genetic Algorithm

This idea follows the basic principles of GA i.e. initialization, evaluation, crossover,
mutation. We define the regression problem and describe it within the confines of
the domain of GA.

The base model performs close to the linear model. We tune the parameters a lot to
get this amount of performance. Individual mutation probability were bumped to
0.35 to get these results. Higher mutation probability values are risky as we might
end up altering good individuals in the population.
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Figure 2: LR vs GA using simple GA
- Diabetes

Figure 3: LR vs GA using simple GA
- Boston

Variable mutation probability

Depending on the fitness difference between generations, we alter the mutation prob-
ability. As the difference decreases we increase the probability to bring back some
randomness and get out of the local minima.

Figure 4: LR vs GA using variable muta-
tion - Diabetes

Figure 5: LR vs GA using variable
mutation - Boston

This method reaches close to linear regression in performance as seen from figure
4 and figure 5. The mutation certainly helps improve performance but in the end
converges to nearly the same solution. Mutation probability used was 0.35.

Crossover-Mutation Split Population

After evaluation a population, parent pairs are selected and sent to crossover. The
top 50% of the offsprings are retained and the remaining half undergo mutation.
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This was done to preserve good individuals and attempt to improve the others.

Figure 6: LR vs GA using split population
- Diabetes

Figure 7: LR vs GA using split pop-
ulation - Boston

From the results, it is evident that the performance is not optimal. We can see
in figure 7 that the algorithm converges to a solution and attain equilibrium. In 6,
we observe an increasing trend but it would require more generations to converge
to a solution at which point it is not worth trying. This algorithm takes the longest
to converge among the mentioned methods. Even increasing mutation probability
resulted in no improvement.

Simulated Annealing Optimization

Liu et al. [5] used the idea of simulated annealing with GA to develop bus routes.
Their results showed that this model was able to converge to an optimal solution.
We wanted to use simulated annealing to help our model get out of a local minima
and converge to the best possible solution. We tweaked this approach slightly by
using the validation set in the evaluation function to impose stricter norms on the
best individuals selected.

We chose coefficient of determination (COD) value for evaluation in the optimization
function rather than choosing error and it showed slightly better performance. This
method converges to a solution the fastest among the mentioned methods.

Given the randomness factor and the properties of simulated annealing optimiza-
tion, we expected this model to converge to a significantly better solution and even
slightly beat the regression model. The results indicate that SA model marginally
outperforms simple GA with both getting an average squared error of 3115.742 and
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Figure 8: LR vs GA using simulated an-
nealing - Diabetes

Figure 9: LR vs GA using simulated
annealing - Boston

3118.398 respectively.

We also see that simple genetic algorithm and simulated annealing optimization
perform similarly where simulated annealing working slightly better than genetic
algorithm in some cases. It does not suffer from problems of local optima as it can
get unstuck from cases where neighbour solutions are worse than the current one.

Future Work

In the future, we would like to try implementing complex crossover masks and
selection techniques to help boost the performance of our model. A good and efficient
fitness function is essential and we would like to test our more complex functions
which are well suited to our problem. We would also like to extend the idea of
solving optimization problems using GA in other domains.

Conclusion

This project started out with an idea about solving regression problem using genetic
algorithms by describing it as an optimization problem and trying to search for
an optimal solution. As we started implementing different methods to solve this
problem, we saw that no matter the method, the algorithm converges to a similar
enough solution with the only difference being the time taken to get there. We
test with different parameters for the genetic algorithms and for the optimization
function which resulted in a marginal improvement in performance. We still have
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some work to do in developing a good enough model but with more research it is
plausible that we might find a model which can beat traditional linear regression
models.
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