

A

Project Report
on

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

Submitted for partial fulfillment of the requirements for the award of the degree of

BACHELOR OF TECHNOLOGY

In

COMPUTER SCIENCE AND ENGINEERING

By

Ms. G. Pooja Reddy (15K81A0574)

Ms. CH. Lalitha Gayatri (15K81A0569)

Mr. Pranav Saineni (15K81A05A5)

Mr. Yash Jain (15K81A0565)

UNDER THE GUIDANCE OF

Mr. N. Krishnavardhan

Associate Professor

Department of CSE

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

St. MARTIN’S ENGINEERING COLLEGE

(Affiliated to JNTU, Hyderabad)
DHULAPALLY(V), QUTBULLAPUR(M), SECUNDERABAD

2018-2019

CERTIFICATE

This is to certify that the project work entitled “FINANCIAL FORECASTING USING

RECURRENT NEURAL NETWORK” that is being submitted by Ms. G. Pooja Reddy

(15K81A0574), Ms. CH. Lalitha Gayatri (15K81A0569), Mr. Yash Jain (15K81A0565), Mr.

Pranav Saineni (15K81A05A5), in partial fulfillment of the requirements for the award of degree

of BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING is

a record of bonafide work carried out by them. The results embodied in this report have been

verified and found satisfactory.

Internal Guide Head of the Department

Mr. N. Krishnavardhan Dr. P. Udaya Kumar

 Associate Professor Professor and Head

External Examiner

ACKNOWLEDGEMENT

The satisfaction and euphoria that accompanies the successful completion of any task would be

incomplete without the mention of the people who made it possible and whose encouragement and

guidance have crowded our efforts with success.

We extend our deep sense of gratitude to Principal, Dr. P. SANTOSH KUMAR PATRA, St.

Martin’s Engineering College, Dhulapally, for permitting us to undertake this project.

We are also thankful to Dr. P. UDAYA KUMAR, Head of the Department, Computer Science

and Engineering, St. Martin’s Engineering College, Dhulapally, for his support and guidance

throughout our project as well as our Project Co-Ordinator Dr. RASHMI SONI, Professor,

Computer Science and Engineering department for her valuable support.

We would like to express our sincere gratitude and indebtedness to our project supervisor

Mr. N. Krishnavardhan Associate Professor, Computer Science and Engineering, St. Martin’s

Engineering College, Dhulapally, for his support and guidance throughout our project

Finally, we express thanks to all those who have helped us in successfully completing this

project. Furthermore, we would like to thank our family and friends for their moral support and

encouragement. We express thanks to all those who have helped us in successfully completing this

project.

G. POOJA REDDY (15K81A0574)

CH. LALITHA GAYATRI (15K81A0569)

PRANAV SAINENI (15K81A05A5)

YASH JAIN (15K81A0565)

ABSTRACT

When is the right time to invest in a company? Can we use recurrent neural networks for time

series analysis? Since stock prices are a sequence, we can use recurrent neural networks to make

predictions. This software allows a user to predict the stock of company with a certain accuracy

based on the dataset taken from yahoo finance. In this project, we will use python, jupyter notebook

and anaconda navigator to test out a prediction model for Apple stock.

Recurrent neural networks allow computers to see, in other words, RNN are used to recognize

images by transforming the original image through layers to a class scores and were inspired by

the visual cortex. Every time we see something, a series of layers of neurons gets activated, and

each layer will detect a set of features such as lines, edges. The high level of layers will detect

more complex features in order to recognize what we saw.

Most of the models used for finical forecasting are not open-source and alternate model to be use

is the ARIMA (Auto Regressive Integrated Moving Average) model which does not provide as

much performance as a recurrent neural network.

The application does require a Wi-Fi connection and requires the user to install Jupyter Notebook

with all the required dependencies. There has been an unprecedented growth in the number of

devices being connected to the Internet since past few years. A lot of what we used to do in the

real world has been shifted to the internet such as the stock market. This gives us a valuable insight

to the cast amount of data which we can use to accurately predict the stock of the coming years.

i

INDEX

S.NO CHAPTER NAME PAGE.NO

1 INTRODUCTION 01

1.1 Objectives 01

1.2 Problem Specification 02

1.3 Methodology 03

1.4 Contributions 04

2 LITERATURE SURVEY 05

3 SYSTEM ANALYSIS 07

3.1 The Study of the System 07

3.2 Input & Output Representation 10

3.3 Process Model Used with Justification 11

4 SYSTEM DESIGN 15

4.1 System Requirements 15

4.2 UML Diagrams 16

4.3 Modules 18

5 IMPLEMENTATION 26

5.1 About Language and tools 26

5.2 Flow Chart 48

5.3 Sample Code 51

5.4 Screenshots 55

6 TESTING 60

6.1 Types of Test 60

6.2 Testing Objectives 63

6.3 Test cases 64

6.4 Test Results 65

7 CONCLUSION & FUTURE SCOPE 66

 REFERENCES

ii

LIST OF IMPORTANT FIGURES

FIG.NO FIG TITLE PAGE NO

3.1 Model of Feed-Forward Neural Network 07

3.2 Recurrent Neural Network & Feed Forward Network 08

3.3 Gradient Descent Graph with Back Propagation 12

3.4 Forward Propagation and Backward Propagation 13

3.5 Recurrent Neural Network as a sequence of Neural Network 13

4.1 Activity Diagram for Long Short-Term Memory 16

4.2 Activity Diagram for Neural Network 17

4.3 Long Short-Term Memory Diagram 18

4.4 Plotting graph using matplotlib 21

4.5 Recurrent Neural Network Structure in Keras 24

5.1 Creating environments in Anaconda Navigator 28

5.2 Activating environments in Anaconda Navigator 28

5.3 Installed Package Toolbar 29

5.4 Package Installation 30

5.5 Jupyter Notebook Example for Plotting 34

5.6 Jupyter Notebook Interface 35

5.7 Python Type Hierarchy 39

5.8 Python Sample Kernel Code 40

5.9 Long Short-Term Memory Model implemented using Keras 41

5.10 tanh Function Graph 42

5.11 Sigmoid Function Graph 43

5.12 VSCode Interface 47

5.13 Supervised Learning Flow Chart 48

5.14 Recurrent Neural Network with shared inputs 49

5.15 Recurrent Neural Network with multiple inputs 50

5.16 Anaconda Navigator 55

5.17 Apple Inc. stock taken from yahoo finance 56

5.18 Dataset values after fixing random values 57

5.19 Normalized Values 57

5.20 Dataset values after applying LSTM Model 58

5.21 Plotted graph for trained vs test set 59

iii

LIST OF IMPORTANT TABLES

TAB.NO TAB TITLE PAGE NO

 6.1 Test Results 65

iv

LIST OF ACRONYMS AND DEFINITONS

S.NO ACRONYM DEFINITION

1 LSTM Long Short-Term Memory

 2 NN Neural Network

 3 RNN Recurrent Neural Network

 4 WIFI Wireless Fidelity

 5 Inc. Incorporation

 6 CTC Connectionist Temporal Classification

 7 IDE Integrated Development Environment

 8 UML Unified Modeling Language

 9 SDK Software Development Kit

 10 ANN Artificial Neural Networks

 11 GD Gradient Descent

 12 A.I Artificial Intelligence

 13 IFC Internet Foundation Classes

 14 GUI Graphical User Interface

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

1

1. INTRODUCTION

1.1 Objectives

Machine learning is an application of artificial intelligence (AI) that provides systems the ability

to automatically learn and improve from experience without being explicitly programmed.

Machine learning focuses on the development of computer programs that can access data and use

it learn for themselves.

The process of learning begins with observations or data, such as examples, direct experience, or

instruction, in order to look for patterns in data and make better decisions in the future based on

the examples that we provide. The primary aim is to allow the computers learn automatically

without human intervention or assistance and adjust actions accordingly.

Machine learning enables analysis of massive quantities of data. While it generally delivers faster,

more accurate results in order to identify profitable opportunities or dangerous risks, it may also

require additional time and resources to train it properly. Combining machine learning with AI and

cognitive technologies can make it even more effective in processing large volumes of

information.

In this project, you will see how you can use a time-series model known as Long Short-Term

Memory. LSTM models are powerful, especially for retaining a long-term memory, by design, as

you will see later. You'll tackle the following topics in this tutorial:

• Understand why would you need to be able to predict stock price movements;

• Download the data - You will be using stock market data gathered from Yahoo finance

• Split train-test data and also perform some data normalization;

• Go over and apply a few averaging techniques that can be used for one-step ahead

predictions;

• Motivate and briefly discuss an LSTM model as it allows to predict more than one-step

ahead;

• Predict and visualize future stock market with current data

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

2

1.2 Problem Specification

If you understand the problem clearly, you should be able to list some potential solutions to test in

order to generate the best model. Understand that you will likely have to try out a few solutions

before you land on a good working model.

Exploratory data analysis can help you understand your data, but you can't yet claim that patterns

you find generalize until you check those patterns against previously unseen data. Failure to check

could lead you in the wrong direction or reinforce stereotypes or bias.

Data collected specifically for your task is going to be the most useful. In practice, you may not

be able to do this, and you'll rely on whatever data you can get that's close enough. That's fine as

long as you're aware of the cost, and as you can eventually get product logs, you can use those to

build something more targeted to your task.

Recurrent Neural Networks (RNN) are a powerful and robust type of neural networks and belong

to the most promising algorithms out there at the moment because they are the only ones with an

internal memory. RNN’s are relatively old, like many other deep learning algorithms. They were

initially created in the 1980’s, but can only show their real potential since a few years, because of

the increase in available computational power, the massive amounts of data that we have nowadays

and the invention of LSTM in the 1990’s.Because of their internal memory, RNN’s are able to

remember important things about the input they received, which enables them to be very precise

in predicting what’s coming next. This is the reason why they are the preferred algorithm for

sequential data like time series, speech, text, financial data, audio, video, weather and much more

because they can form a much deeper understanding of a sequence and its context, compared to

other algorithms.

You would like to model stock prices correctly, so as a stock buyer you can reasonably decide

when to buy stocks and when to sell them to make a profit. This is where time series modelling

comes in. You need good machine learning models that can look at the history of a sequence of

data and correctly predict what the future elements of the sequence are going to be.

This project uses Recurrent Neural Networks to calculate the stock prices of a company (in our

case we use Apple Inc.) to predict the stock of the company for the upcoming years based on the

data we currently have upon it.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

3

1.3 Methodology

Before we begin our journey of understanding how recurrent neural network enhances

personalization across various businesses, let us try to get a little idea about machine learning

first. Machine learning mainly focuses on the development of computer programs which can teach

themselves to grow and change when exposed to new data. Machine learning studies algorithms

for self-learning to do stuff. It can process massive data faster with the learning algorithm.

Data is growing day by day, and it is impossible to understand all of the data with higher speed

and higher accuracy. More than 80% of the data is unstructured that is audios, videos, photos,

documents, graphs, etc. Finding patterns in data on planet earth is impossible for human brains.

The data has been very massive and the time taken to compute would increase only. This is where

Machine Learning comes into action, to help people with significant data in minimum time.

The term "recurrent neural network" is used indiscriminately to refer to two broad classes of

networks with a similar general structure, where one is finite impulse and the other is infinite

impulse. Both classes of networks exhibit temporal dynamic behavior. A finite impulse recurrent

network is a directed acyclic graph that can be unrolled and replaced with a strictly feedforward

neural network, while an infinite impulse recurrent network is a directed cyclic graph that cannot

be unrolled.

Both finite impulse and infinite impulse recurrent networks can have additional stored state, and

the storage can be under direct control by the neural network. The storage can also be replaced

by another network or graph, if that incorporates time delays or has feedback loops. Such

controlled states are referred to as gated state or gated memory, and are part of long short-term

memory networks (LSTMs) and gated recurrent units.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

4

1.4 Contributions

Arthur Samuel, an American pioneer in the field of computer gaming and artificial intelligence,

coined the term "Machine Learning" in 1959 while at IBM. As a scientific endeavor, machine

learning grew out of the quest for artificial intelligence. Already in the early days of AI as an

academic discipline, some researchers were interested in having machines learn from data. They

attempted to approach the problem with various symbolic methods, as well as what were then

termed "neural networks"; these were mostly perceptron and other models that were later found to

be reinventions of the generalized linear models of statistics. Probabilistic reasoning was also

employed, especially in automated medical diagnosis.

However, an increasing emphasis on the logical, knowledge-based approach caused a rift between

AI and machine learning. Probabilistic systems were plagued by theoretical and practical problems

of data acquisition and representation. By 1980, expert systems had come to dominate AI, and

statistics was out of favor. Work on symbolic/knowledge-based learning did continue within AI,

leading to inductive logic programming, but the more statistical line of research was now outside

the field of AI proper, in pattern recognition and information retrieval. Neural networks research

had been abandoned by AI and computer science around the same time. This line, too, was

continued outside the AI/CS field, as "connectionism", by researchers from other disciplines

including Hopfield, Rumelhart and Hinton. Their main success came in the mid-1980s with the

reinvention of backpropagation.

Long short-term memory (LSTM) networks were discovered by Hochreiter and Schmidhuber in

1997 and set accuracy records in multiple applications domains. Around 2007, LSTM started to

revolutionize speech recognition, outperforming traditional models in certain speech

applications. In 2009, a Connectionist Temporal Classification (CTC)-trained LSTM network

was the first RNN to win pattern recognition contests when it won several competit ions in

connected handwriting recognition. In 2014, the Chinese search giant Baidu used CTC-trained

RNNs to break the Switchboard Hub5'00 speech recognition benchmark without using any

traditional speech processing methods.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

5

2. LITERATURE SURVEY

Artificial neural networks (ANNs) are made from layers of connected units called artificial

neurons. A “shallow network” refers to an ANN with one input layer, one output layer, and at most

one hidden layer without a recurrent connection. As the number of layers increases, the complexity

of network increases too. More number of layers or recurrent connections generally increases the

depth of the network and empowers it to provide various levels of data representation and feature

extraction, referred to as “deep learning”. In general, these networks are made from nonlinear but

simple units, where the higher layers provide a more abstract representation of data and suppresses

unwanted variability.

Due to optimization difficulties caused by composition of the nonlinearity at each layer, not much

work occurred on deep network architectures before significant advances in 2006. ANNs with

recurrent connections are called recurrent neural networks (RNNs), which are capable of

modelling sequential data for sequence recognition and prediction. RNNs are made of high

dimensional hidden states with non-linear dynamics. The structure of hide n states work as the

memory of the network and state of the hidden layer at a time is conditioned on its previous state.

This structure enables the RNNs to store, remember, and process past complex signals for long

time periods. RNNs can map an input sequence to the output sequence at the current timestep and

predict the sequence in the next timestep.

The development of back-propagation using gradient descent (GD) has provided a great

opportunity for training RNNs. This simple training approach has accelerated practical

achievements in developing RNNs. However, it comes with some challenges in modelling long-

term dependencies such as vanishing and exploding gradient problems. RNNs are a class of

supervised machine learning models, made of artificial neurons with one or more feedback loops.

The feedback loops are recurrent cycles over time or sequence (we call it time throughout this

paper). Training a RNN in a supervised fashion requires a training dataset of input-target pairs.

The objective is to minimize the difference between the output and target pairs (i.e., the loss value)

by optimizing the weights of the network.

A RNN refers to a network of artificial neurons with recurrent connections among them. The

recurrent connections learn the dependencies among input sequential or time-series data. The

ability to learn sequential dependencies has allowed RNNs to gain popularity in applications such

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

6

as speech recognition, speech synthesis, machine vision, and video description generation. One of

the main challenges is training RNNs is learning long-term dependencies in data. It occurs

generally due to the large number of parameters that need to be optimized during training in RNN

over long periods of time. This paper discusses several architectures and training methods that

have been developed to tackle the problems associated with training of RNNs.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

7

3. SYSTEM ANALYSIS

3.1 The Study of the System

We will first discuss some important facts about the normal “Feed Forward Neural Networks”,

that you need to know, to understand Recurrent Neural Networks properly. But it is also important

that you understand what sequential data is. It basically is just ordered data, where related things

follow each other. Examples are financial data or the DNA sequence. The most popular type of

sequential data is perhaps Time series data, which is just a series of data points that are listed in

time order.

Model:

Fig 3.1: Model of Feed-Forward Neural Network

RNN’s and Feed-Forward Neural Networks are both named after the way they channel

information. In a Feed-Forward neural network, the information only moves in one direction, from

the input layer, through the hidden layers, to the output layer. The information moves straight

through the network. Because of that, the information never touches a node twice. Feed-Forward

Neural Networks, have no memory of the input they received previously and are therefore bad in

predicting what’s coming next. Because a feedforward network only considers the current input,

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

8

it has no notion of order in time. They simply can’t remember anything about what happened in

the past, except their training.

In a RNN, the information cycles through a loop. When it makes a decision, it takes into

consideration the current input and also what it has learned from the inputs it received previously.

The two images below illustrate the difference in the information flow between a RNN and a Feed-

Forward Neural Network.

Fig 3.2: Recurrent Neural Network & Feed-Forward Neural Network

A usual RNN has a short-term memory. In combination with a LSTM they also have a long-term

memory, but we will discuss this further below. Another good way to illustrate the concept of a

RNN’s memory is to explain it with an example:

Imagine you have a normal feed-forward neural network and give it the word “neuron” as an input

and it processes the word character by character. At the time it reaches the character ‘r’, it has

already forgotten about ‘n’, ‘e’ and ‘u’, which makes it almost impossible for this type of neural

network to predict what character would come next.

A Recurrent Neural Network is able to remember exactly that, because of its internal memory. It

produces output, copies that output and loops it back into the network. Recurrent Neural Networks

add the immediate past to the present. Therefore, a Recurrent Neural Network has two inputs, the

present and the recent past. This is important because the sequence of data contains crucial

information about what is coming next, which is why a RNN can do things other algorithms can’t.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

9

A Feed-Forward Neural Network assigns, like all other Deep Learning algorithms, a weight matrix

to its inputs and then produces the output. Note that RNN’s apply weights to the current and also

to the previous input. Furthermore, they also tweak their weights for both through gradient descent

and Backpropagation Through Time, which we will discuss in the next section below.

Also note that while Feed-Forward Neural Networks map one input to one output, RNN’s can map

one to many, many to many (translation) and many to one (classifying a voice).

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

10

3.2 Input & Output Representation

To provide following features-

A. Download stock of any company listed in yahoo finance

B. The ability to control the splitting ratio of the test & training sets

C. Storing the predicted values in xlxs format

D. High Performance

E. Can run on any windows, osx and linux device

F. Storing the predicted values in csv format

G. Plot the graph according to the trained and test set

Desktop app must be lightweight and must not consume excess resources (memory, CPU, power

etc.).

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

11

3.3 Process Model Used with Justification

This Project consists of following characteristics-

A. It has been developed using Python

B. It developed in Jupyter Notebook so has access to all Tensorflow Directories

C. It does not require much resources and can be run on a laptop with less than 2GB of RAM.

D. It is platform independent.

It’s tough at first to wrap our minds around the fact that a computer can predict the future but this

can be accurately done if we have enough data train our computer.

Long Short-Term Memory (LSTM) networks are an extension for recurrent neural networks,

which basically extends their memory. Therefore, it is well suited to learn from important

experiences that have very long-time lags in between.

To understand the concept of Backpropagation Through Time you definitely have to understand

the concepts of Forward and Back-Propagation first. I will not go into the details here because that

would be way out of the limit of this blog post, so I will try to give you a definition of these

concepts that is as simple as possible but allows you to understand the overall concept of

backpropagation through time.

In neural networks, you basically do Forward-Propagation to get the output of your model and

check if this output is correct or incorrect, to get the error. Now you do Backward-Propagation,

which is nothing but going backwards through your neural network to find the partial derivatives

of the error with respect to the weights, which enables you to subtract this value from the weights.

You can view an RNN as a sequence of Neural Networks that you train one after another with

backpropagation

Those derivatives are then used by Gradient Descent, an algorithm that is used to iteratively

minimize a given function. Then it adjusts the weights up or down, depending on which decreases

the error.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

12

Fig 3.3: Gradient Descent Graph with Back Propagation

Gradient descent is an optimization algorithm used to minimize some function by iteratively

moving in the direction of steepest descent as defined by the negative of the gradient. In machine

learning, we use gradient descent to update the parameters of our model. Parameters refer to

coefficients in Linear Regression and weights in neural networks.

A Loss Functions tells us “how good” our model is at making predictions for a given set of

parameters. The cost function has its own curve and its own gradients. The slope of this curve tells

us how to update our parameters to make the model more accurate. Formula for cost function:

f(m,b)=1/Nn∑i=1(yi−(mxi+b))^2

That is exactly how a Neural Network learns during the training process. So, with Backpropagation

you basically try to tweak the weights of your model, while training.

The image below illustrates the concept of Forward Propagation and Backward Propagation

perfectly at the example of a Feed Forward Neural Network:

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

13

Fig 3.4: Forward Propagation and Backward Propagation

The image below illustrates an unrolled RNN. On the left, you can see the RNN, which is unrolled

after the equal sign. Note that there is no cycle after the equal sign since the different timesteps are

visualized and information gets passed from one timestep to the next. This illustration also shows

why an RNN can be seen as a sequence of Neural Networks.

Fig 3.5: RNN as a sequence of Neural Networks

If you do Backpropagation Through Time, it is required to do the conceptualization of unrolling,

since the error of a given timestep depends on the previous timestep.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

14

Within BPTT the error is back-propagated from the last to the first timestep, while unrolling all

the timesteps. This allows calculating the error for each timestep, which allows updating the

weights. Note that BPTT can be computationally expensive when you have a high number of

timesteps. Some of the formulas used are:

• Formula for calculating current state:

ht -> current state

ht-1-> previous state

xt -> input state

• Formula for applying Activation function(tanh):

whh -> weight at recurrent neuron

wxh -> weight at input neuron

• Formula for calculating output:

Yt -> output

Why -> weight at output layer

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

15

4. SYSTEM DESIGN

4.1 System Requirements

Software Requirement:

• Python

• Anaconda Navigator

• VScode

• Jupyter Notebook

• Chrome

Hardware Requirements:

• Processor – i3

• Hard Disk – 5 GB

• Memory – 2GB RAM

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

16

4.2 UML Diagrams

Fig 4.1: Activity Diagram for LSTM

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

17

Fig 4.2: Activity Diagram for Neural Network

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

18

4.3 Modules

4.3.1 LONG-SHORT TERM MEMORY:

Long Short-Term Memory (LSTM) networks are an extension for recurrent neural networks,

which basically extends their memory. Therefore, it is well suited to learn from important

experiences that have very long-time lags in between. The units of an LSTM are used as building

units for the layers of a RNN, which is then often called an LSTM network. LSTM’s enable RNN’s

to remember their inputs over a long period of time. This is because LSTM’s contain their

information in a memory, that is much like the memory of a computer because the LSTM can read,

write and delete information from its memory.

This memory can be seen as a gated cell, where gated means that the cell decides whether or not

to store or delete information (e.g. if it opens the gates or not), based on the importance it assigns

to the information. The assigning of importance happens through weights, which are also learned

by the algorithm. This simply means that it learns over time which information is important and

which not. In an LSTM you have three gates: input, forget and output gate. These gates

determine whether or not to let new input in (input gate), delete the information because it isn’t

important (forget gate) or to let it impact the output at the current time step (output gate). You

can see an illustration of a RNN with its three gates below:

Fig 4.3: Long-Short Term Memory Diagram

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

19

4.3.2 NUMPY:

NumPy is the fundamental package for scientific computing in Python. It is a Python library that

provides a multidimensional array object, various derived objects (such as masked arrays and

matrices), and an assortment of routines for fast operations on arrays, including mathematical,

logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear

algebra, basic statistical operations, random simulation and much more.

At the core of the NumPy package, is the ndarray object. This encapsulates n-dimensional arrays

of homogeneous data types, with many operations being performed in compiled code for

performance. Some examples are

Array creation:

Basic operations:

>>> import numpy as np

>>> x = np.array([1, 2, 3])

>>> x

array([1, 2, 3])

>>> y = np.arange(10) # like Python's range, but returns an array

>>> y

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> a = np.array([1, 2, 3, 6])

>>> b = np.linspace(0, 2, 4) # create an array with four equally spaced

points starting with 0 and ending with 2.

>>> c = a - b

>>> c

array([1. , 1.33333333, 1.66666667, 4.])

>>> a**2

array([1, 4, 9, 36])

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

20

4.3.3 MATPLOTLIB:

Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety

of hardcopy formats and interactive environments across platforms. Matplotlib can be used in

Python scripts, the Python and IPython shells, the Jupyter notebook, web application servers, and

four graphical user interface toolkits.

matplotlib.pyplot is a collection of command style functions that make matplotlib work like

MATLAB. Each pyplot function makes some change to a figure: e.g., creates a figure, creates a

plotting area in a figure, plots some lines in a plotting area, decorates the plot with labels, etc.

In matplotlib.pyplot various states are preserved across function calls, so that it keeps track of

things like the current figure and plotting area, and the plotting functions are directed to the current

axes (please note that "axes" here and in most places in the documentation refers to the axes part

of a figure and not the strict mathematical term for more than one axis).

Generating visualizations with pyplot is very quick:

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

21

Fig 4.4: Plotting graph using matplotlib

You may be wondering why the x-axis ranges from 0-3 and the y-axis from 1-4. If you provide a

single list or array to the plot() command, matplotlib assumes it is a sequence of y values, and

automatically generates the x values for you. Since python ranges start with 0, the default x

vector has the same length as y but starts with 0. Hence the x data are [0,1,2,3]. plot() is a

versatile command, and will take an arbitrary number of arguments.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

22

4.3.4 PANDAS:

pandas is a Python package providing fast, flexible, and expressive data structures designed to

make working with “relational” or “labeled” data both easy and intuitive. It aims to be the

fundamental high-level building block for doing practical, real world data analysis in Python.

Additionally, it has the broader goal of becoming the most powerful and flexible open source

data analysis / manipulation tool available in any language.

pandas is a Python package providing fast, flexible, and expressive data structures designed to

make working with “relational” or “labeled” data both easy and intuitive. It aims to be the

fundamental high-level building block for doing practical, real world data analysis in Python.

Additionally, it has the broader goal of becoming the most powerful and flexible open source data

analysis / manipulation tool available in any language. It is already well on its way toward this

goal.

pandas is well suited for many different kinds of data:

• Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet.

• Ordered and unordered (not necessarily fixed-frequency) time series data.

• Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column

labels.

• Any other form of observational / statistical data sets. The data actually need not be labeled

at all to be placed into a pandas data structure.

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-

dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and

many areas of engineering. For R users, DataFrame provides everything that R’s data.frame

provides and much more. pandas is built on top of NumPy and is intended to integrate well within

a scientific computing environment with many other 3rd party libraries.

The best way to think about the pandas data structures is as flexible containers for lower

dimensional data. For example, DataFrame is a container for Series, and Series is a container for

scalars. We would like to be able to insert and remove objects from these containers in a dictionary-

like fashion.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

23

4.3.5 KERAS:

Keras is an open-source neural-network library written in Python. It is capable of running on top

of TensorFlow, Microsoft Cognitive Toolkit, Theano, or PlaidML. Designed to enable fast

experimentation with deep neural networks, it focuses on being user-friendly, modular, and

extensible. It was developed as part of the research effort of project ONEIROS (Open-ended

Neuro-Electronic Intelligent Robot Operating System), and its primary author and maintainer is

François Chollet, a Google engineer. Chollet also is the author of the XCeption deep neural

network model.

In 2017, Google's TensorFlow team decided to support Keras in TensorFlow's core library. Chollet

explained that Keras was conceived to be an interface rather than a standalone machine-learning

framework. It offers a higher-level, more intuitive set of abstractions that make it easy to develop

deep learning models regardless of the computational backend used. Microsoft added a CNTK

backend to Keras as well, available as of CNTK v2.0.

Keras contains numerous implementations of commonly used neural-network building blocks such

as layers, objectives, activation functions, optimizers, and a host of tools to make working with

image and text data easier. The code is hosted on GitHub, and community support forums include

the GitHub issues page, and a Slack channel.

In addition to standard neural networks, Keras has support for convolutional and recurrent neural

networks. It supports other common utility layers like dropout, batch normalization, and pooling.

Keras allows users to productize deep models on smartphones (iOS and Android), on the web, or

on the Java Virtual Machine.[10] It also allows use of distributed training of deep-learning models

on clusters of Graphics Processing Units (GPU) and Tensor processing units (TPU).

Keras is a high-level neural networks API, written in Python and capable of running on top of

TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation.

Being able to go from idea to result with the least possible delay is key to doing good research.

Use Keras if you need a deep learning library that:

• Allows for easy and fast prototyping (through user friendliness, modularity, and

extensibility).

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

24

• Supports both convolutional networks and recurrent networks, as well as combinations of

the two.

• Runs seamlessly on CPU and GPU

Fig 4.5: Recurrent Neural Network Structure in Keras

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

25

4.3.6 SCIKIT-LEARN:

Scikit-learn (formerly scikits.learn) is a free software machine learning library for the Python

programming language. It features various classification, regression and clustering algorithms

including support vector machines, random forests, gradient boosting, k-means and DBSCAN, and

is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy.

The scikit-learn project started as scikits.learn, a Google Summer of Code project by David

Cournapeau. Its name stems from the notion that it is a "SciKit" (SciPy Toolkit), a separately-

developed and distributed third-party extension to SciPy. The original codebase was later rewritten

by other developers. In 2010 Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort and Vincent

Michel, all from the French Institute for Research in Computer Science and Automation in

Rocquencourt, France, took leadership of the project and made the first public release on February

the 1st 2010. Of the various scikits, scikit-learn as well as scikit-image were described as "well-

maintained and popular" in November 2012. As of 2018, scikit-learn is under active development.

Scikit-learn is largely written in Python, with some core algorithms written in Cython to achieve

performance. Support vector machines are implemented by a Cython wrapper around LIBSVM;

logistic regression and linear support vector machines by a similar wrapper around LIBLINEAR.

Scikit-learn was initially developed by David Cournapeau as a Google summer of code project in

2007. Later Matthieu Brucher joined the project and started to use it as a part of his thesis work.

In 2010 INRIA, the French Institute for Research in Computer Science and Automation, got

involved and the first public release (v0.1 beta) was published in late January 2010.

• July 2017. scikit-learn 0.19.0

• September 2016. scikit-learn 0.18.0

• November 2015. scikit-learn 0.17.0

• March 2015. scikit-learn 0.16.0

• July 2014. scikit-learn 0.15.0

• August 2013. scikit-learn 0.14

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

26

5. SYSTEM IMPLEMENTATION

5.1 About Language and Tools

5.1.1 ANACONDA NAVIGATOR:

Anaconda Navigator is a desktop graphical user interface (GUI) included in Anaconda®

distribution that allows you to launch applications and easily manage conda packages,

environments and channels without using command-line commands. Navigator can search for

packages on Anaconda Cloud or in a local Anaconda Repository. It is available for Windows,

macOS, and Linux.

In order to run, many scientific packages depend on specific versions of other packages. Data

scientists often use multiple versions of many packages, and use multiple environments to separate

these different versions.

The command line program conda is both a package manager and an environment manager, to

help data scientists ensure that each version of each package has all the dependencies it requires

and works correctly.

Navigator is an easy, point-and-click way to work with packages and environments without

needing to type conda commands in a terminal window. You can use it to find the packages you

want, install them in an environment, run the packages and update them, all inside Navigator.

The following applications are available by default in Navigator:

• JupyterLab

• Jupyter Notebook

• QTConsole

• Spyder

• VSCode

• Glueviz

• Orange 3 App

• Rodeo

• RStudio

Advanced conda users can also build your own Navigator applications. The simplest way is with

Spyder. From the Navigator Home tab, click Spyder, and write and execute your code.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

27

You can also use Jupyter Notebooks the same way. Jupyter Notebooks are an increasingly popular

system that combine your code, descriptive text, output, images and interactive interfaces into a

single notebook file that is edited, viewed and used in a web browser.

Normally Navigator is used online, so that it can download and install packages. In online mode,

Navigator must be able to reach these sites, so they may need to be whitelisted in your network’s

firewall settings.

• https://repo.anaconda.com (or for older versions of Navigator and

Conda, https://repo.anaconda.com)

• https://conda.anaconda.org for conda-forge and other channels on Anaconda Cloud

(anaconda.org)

• https://vscode-update.azurewebsites.net/ for updating Visual Studio Code

• google-public-dns-a.google.com (8.8.8.8:53) to check internet connectivity with Google

Public DNS

If Navigator detects that internet access is not available, it automatically enables offline mode and

displays this message:

Offline mode: Some of the functionality of Anaconda Navigator will be limited. Conda

environment creation will be subject to the packages currently available on your package cache.

Offline mode is indicated to the left of the login/logout button on the top right corner of the main

application window. Offline mode will be disabled automatically when internet connectivity is

restored. You can also manually force Offline mode by enabling the setting on the application

preferences. In the Preferences dialog, select “Enable offline mode” to enter offline mode even if

internet access is available. Using Navigator in offline mode is equivalent to using the command

line conda commands create, install, remove, and update with the flag --offline so that conda does

not connect to the internet.

Managing Environments: Navigator uses conda to create separate environments containing files,

packages, and their dependencies that will not interact with other environments. Create a new

environment named snowflakes and install a package in it:

1. In Navigator, click the Environments tab, then click the Create button. The Create new

environment dialog box appears.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

28

2. In the Environment name field, type a descriptive name for your environment.

Fig 5.1: Creating Environment

3. Click Create. Navigator creates the new environment and activates it.

Fig 5.2: Activating Environment

4. Switch between them (activate and deactivate environments) by clicking the name of the

environment you want to use.

5. Return to the other environment by clicking its name.

Managing Python: When you create a new environment, Navigator installs the same Python

version you used when you downloaded and installed Anaconda. If you want to use a different

version of Python, for example Python 3.5, simply create a new environment and specify the

version of Python that you want in that environment. Create a new environment named “snakes”

that contains Python 3.5:

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

29

1. In Navigator, click the Environments tab, then click the Create button. The Create new

environment dialog box appears.

2. In the Environment name field, type the descriptive name “snakes” and select the version

of Python you want to use from the Python Packages box (3.6, 3.5 or 2.7). Select a different

version of Python than is in your other environments, base or snowflakes.

3. Click the Create button.

4. Activate the version of Python you want to use by clicking the name of that environment.

Managing Packages: In this section, you check which packages you have installed, check which

are available, and look for a specific package and install it.

1. To find a package you have already installed, click the name of the environment you want

to search. The installed packages are displayed in the right pane.

2. You can change the selection of packages displayed in the right pane at any time by clicking

the drop-down box above it and selecting Installed, Not Installed, Updateable, Selected, or

All.

Fig 5.3: Installed Package Toolbar

3. Check to see if a package you have not installed named “beautifulsoup4” is available from

the Anaconda repository (must be connected to the Internet). On the Environments tab, in

the Search Packages box, type beautifulsoup4, and from the Search Subset box select All

or Not Installed.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

30

4. To install the package into the current environment, check the checkbox next to the package

name, then click the bottom Apply button.

Fig 5.4: Package Installation

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

31

5.1.2 JUPYTER NOTEBOOK:

The Jupyter Notebook is an open source web application that you can use to create and share

documents that contain live code, equations, visualizations, and text. Jupyter Notebook is

maintained by the people at Project Jupyter.

A Jupyter Notebook can be converted to a number of open standard output formats (HTML,

presentation slides, LaTeX, PDF, ReStructuredText, Markdown, Python) through "Download As"

in the web interface, via the nbconvert library or "jupyter nbconvert" command line interface in a

shell.

To simplify visualisation of Jupyter notebook documents on the web, the nbconvert library is

provided as a service through NbViewer which can take a URL to any publicly available notebook

document, convert it to HTML on the fly and display it to the user.

Jupyter Notebook provides a browser-based REPL built upon a number of popular open-source

libraries:

• IPython

• ØMQ

• Tornado (web server)

• jQuery

• Bootstrap (front-end framework)

• MathJax

Jupyter Notebook can connect to many kernels to allow programming in many languages. By

default, Jupyter Notebook ships with the IPython kernel. As of the 2.3 release (October 2014),

there are currently 49 Jupyter-compatible kernels for as many programming languages, including

Python, R, Julia and Haskell.

The Notebook interface was added to IPython in the 0.12 release (December 2011), renamed to

Jupyter notebook in 2015 (IPython 4.0 – Jupyter 1.0). Jupyter Notebook is similar to the notebook

interface of other programs such as Maple, Mathematica, and SageMath, a computational interface

style that originated with Mathematica in the 1980s. According to The Atlantic, Jupyter interest

overtook the popularity of the Mathematica notebook interface in early 2018.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

32

1. Jupyter Kernels: A Jupyter kernel is a program responsible for handling various types of

request (code execution, code completions, inspection), and providing a reply. Kernels talk

to the other components of Jupyter using ZeroMQ over the network, and thus can be on

the same or remote machines. Unlike many other Notebook-like interfaces, in Jupyter,

kernels are not aware that they are attached to a specific document, and can be connected

to many clients at once. Usually kernels allow execution of only a single language, but

there are a couple of exceptions.

By default, Jupyter ships with IPython as a default kernel and a reference implementation

via the ipykernel wrapper. Kernels for many languages having varying quality and features

are available.

2. JupyterHub: JupyterHub is a multi-user server for Jupyter Notebooks. It is designed to

support many users by spawning, managing, and proxying many singular Jupyter

Notebook servers. While JupyterHub requires managing servers, third-party services like

Jupyo provide an alternative to JupyterHub by hosting and managing multi-user Jupyter

notebooks in the cloud.

3. JupyterLab: JupyterLab is the next-generation user interface for Project Jupyter. It offers

all the familiar building blocks of the classic Jupyter Notebook (notebook, terminal, text

editor, file browser, rich outputs, etc.) in a flexible and powerful user interface. The first

stable release was announced on February 20, 2018, and in December 2018 it was adopted

as the primary interface for the cloud-based Jupyter service Jupyo.

Jupyter Notebooks are a spin-off project from the IPython project, which used to have an IPython

Notebook project itself. The name, Jupyter, comes from the core supported programming

languages that it supports: Julia, Python, and R. Jupyter ships with the IPython kernel, which

allows you to write your programs in Python, but there are currently over 100 other kernels that

you can also use.

The Jupyter Notebook is not included with Python, so if you want to try it out, you will need to

install Jupyter. There are many distributions of the Python language. This article will focus on just

two of them for the purposes of installing Jupyter Notebook. The most popular is CPython, which

is the reference version of Python that you can get from their website. It is also assumed that you

are using Python 3.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

33

When you are working with Jupyter Notebooks, you will find that you need to share your results

with non-technical people. When that happens, you can use the nbconvert tool which comes with

Jupyter Notebook to convert or export your Notebook into one of the following formats:

• HTML

• LaTeX

• PDF

• RevealJS

• Markdown

• ReStructured Text

• Executable script

The nbconvert tool uses Jinja templates under the covers to convert your Notebook files (.ipynb)

into these other formats.

Jinja is a template engine that was made for Python. Also note that nbconvert also depends on

Pandoc and TeX to be able to export to all the formats above. If you don’t have one or more of

these, some of the export types may not work. For more information, you should check out the

documentation.

The Notebook Dashboard is the component which is shown first when you launch Jupyter

Notebook App. The Notebook Dashboard is mainly used to open notebook documents, and to

manage the running kernels (visualize and shutdown).

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

34

Fig 5.5: Jupyter Notebook Example For Plotting

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

35

The Notebook Dashboard has other features similar to a file manager, namely navigating folders

and renaming/deleting files.

The notebook extends the console-based approach to interactive computing in a qualitatively new

direction, providing a web-based application suitable for capturing the whole computation process:

developing, documenting, and executing code, as well as communicating the results. The Jupyter

notebook combines two components:

A web application: a browser-based tool for interactive authoring of documents which combine

explanatory text, mathematics, computations and their rich media output.

Notebook documents: a representation of all content visible in the web application, including

inputs and outputs of the computations, explanatory text, mathematics, images, and rich media

representations of objects.

Fig 5.6: Juypter Notebook Interface

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

36

5.1.3 CORE PYTHON:

Python is an interpreted, high-level, general-purpose programming language. Created by Guido

van Rossum and first released in 1991, Python has a design philosophy that emphasizes code

readability, notably using significant whitespace. It provides constructs that enable clear

programming on both small and large scales. Van Rossum led the language community until

stepping down as leader in July 2018.

Python features a dynamic type system and automatic memory management. It supports multiple

programming paradigms, including object-oriented, imperative, functional and procedural. It also

has a comprehensive standard library.

Python interpreters are available for many operating systems. CPython, the reference

implementation of Python, is open source software and has a community-based development

model, as do nearly all of Python's other implementations. Python and CPython are managed by

the non-profit Python Software Foundation.

Python is a multi-paradigm programming language. Object-oriented programming and structured

programming are fully supported, and many of its features support functional programming and

aspect-oriented programming (including by metaprogramming and metaobjects (magic methods)).

Many other paradigms are supported via extensions, including design by contract and logic

programming.

Python uses dynamic typing, and a combination of reference counting and a cycle-detecting

garbage collector for memory management. It also features dynamic name resolution (late

binding), which binds method and variable names during program execution.

Python's design offers some support for functional programming in the Lisp tradition. It has filter,

map, and reduce functions; list comprehensions, dictionaries, sets and generator expressions. The

standard library has two modules (itertools and functools) that implement functional tools

borrowed from Haskell and Standard ML.

The language's core philosophy is summarized in the document The Zen of Python (PEP 20),

which includes aphorisms such as:

• Beautiful is better than ugly

• Explicit is better than implicit

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

37

• Simple is better than complex

• Complex is better than complicated

• Readability counts.

Python's development is conducted largely through the Python Enhancement Proposal (PEP)

process, the primary mechanism for proposing major new features, collecting community input on

issues and documenting Python design decisions. Python coding style is covered in PEP 8.

Outstanding PEPs are reviewed and commented on by the Python community and Guido Van

Rossum, Python's Benevolent Dictator for Life.

Enhancement of the language corresponds with development of the CPython reference

implementation. The mailing list python-dev is the primary forum for the language's development.

Specific issues are discussed in the Roundup bug tracker maintained at python.org. Development

originally took place on a self-hosted source-code repository running Mercurial, until Python

moved to GitHub in January 2017.

CPython's public releases come in three types, distinguished by which part of the version number

is incremented:

• Backward-incompatible versions, where code is expected to break and need to be manually

ported. The first part of the version number is incremented. These releases happen

infrequently—for example, version 3.0 was released 8 years after 2.0.

• Major or "feature" releases, about every 18 months, are largely compatible but introduce

new features. The second part of the version number is incremented. Each major version is

supported by bugfixes for several years after its release.

• Bugfix releases, which introduce no new features, occur about every 3 months and are

made when a sufficient number of bugs have been fixed upstream since the last release.

Security vulnerabilities are also patched in these releases. The third and final part of the

version number is incremented.

Many alpha, beta, and release-candidates are also released as previews and for testing before final

releases. Although there is a rough schedule for each release, they are often delayed if the code is

not ready. Python's development team monitors the state of the code by running the large unit test

suite during development, and using the BuildBot continuous integration system.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

38

The community of Python developers has also contributed over 86,000 software modules (as of

20 August 2016) to the Python Package Index (PyPI), the official repository of third-party Python

libraries. The major academic conference on Python is PyCon. There are also special Python

mentoring programme, such as Pyladies.

Python uses duck typing and has typed objects but untyped variable names. Type constraints are

not checked at compile time; rather, operations on an object may fail, signifying that the given

object is not of a suitable type. Despite being dynamically typed, Python is strongly typed,

forbidding operations that are not well-defined (for example, adding a number to a string) rather

than silently attempting to make sense of them.

Python allows programmers to define their own types using classes, which are most often used for

object-oriented programming. New instances of classes are constructed by calling the class (for

example, SpamClass() or EggsClass()), and the classes are instances of the metaclass type (itself

an instance of itself), allowing metaprogramming and reflection.

Before version 3.0, Python had two kinds of classes: old-style and new-style. The syntax of both

styles is the same, the difference being whether the class object is inherited from, directly or

indirectly (all new-style classes inherit from object and are instances of type). In versions of Python

2 from Python 2.2 onwards, both kinds of classes can be used. Old-style classes were eliminated

in Python 3.0.

The long-term plan is to support gradual typing and from Python 3.5, the syntax of the language

allows specifying static types but they are not checked in the default implementation, CPython.

An experimental optional static type checker named mypy supports compile-time type checking.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

39

Fig 5.7: Python Type Hierarchy

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

40

Fig 5.8: Python Sample Kernel Code

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

41

5.1.4 KERAS LSTM MODEL:

The above drawback of RNN pushed the scientists to develop and invent a new variant of the RNN

model, called Long Short-Term Memory. LSTM can solve this problem, because it uses gates to

control the memorizing process.

Let’s understand the architecture of LSTM and compare it with that of RNN:

Fig 5.9: LSTM Model implemented using Keras

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

42

The symbols used here have following meaning:

• X: Scaling of information

• +: Adding information

• σ: Sigmoid layer

• tanh: tanh layer

• h(t-1): Output of last LSTM unit

• c(t-1): Memory from last LSTM unit

• X(t): Current input

• c(t): New updated memory

• h(t): Current output

Why tanh? To overcome the vanishing gradient problem, we need a function whose second

derivative can sustain for a long range before going to zero. tanh is a suitable function with the

above property.

Fig 5.10: tanh Function Graph

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

43

Why Sigmoid? As Sigmoid can output 0 or 1, it can be used to forget or remember the information.

Information passes through many such LSTM units.

Fig 5.11: Sigmoid Function Graph

There are three main components of an LSTM unit:

1. LSTM has a special architecture which enables it to forget the unnecessary information.

The sigmoid layer takes the input X(t) and h(t-1) and decides which parts from old output

should be removed (by outputting a 0). In our example, when the input is ‘He has a female

friend Maria’, the gender of ‘David’ can be forgotten because the subject has changed to

‘Maria’. This gate is called forget gate f(t). The output of this gate is f(t)*c(t-1)

2. The next step is to decide and store information from the new input X(t) in the cell state.

A Sigmoid layer decides which of the new information should be updated or ignored. A

tanh layer creates a vector of all the possible values from the new input. These two are

multiplied to update the new cell sate. This new memory is then added to old memory c(t-

1) to give c(t). In our example, for the new input ‘He has a female friend Maria’, the gender

of Maria will be updated. When the input is ‘Maria works as a cook in a famous restaurant

in New York whom he met recently in a school alumnus meet’, the words like ‘famous’,

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

44

‘school alumni meet’ can be ignored and words like ‘cook, ‘restaurant’ and ‘New York’

will be updated.

3. Finally, we need to decide what we’re going to output. A sigmoid layer decides which parts

of the cell state we are going to output. Then, we put the cell state through a tanh generating

all the possible values and multiply it by the output of the sigmoid gate, so that we only

output the parts we decided to. In our example, we want to predict the blank word, our

model knows that it is a noun related to ‘cook’ from its memory, it can easily answer it as

‘cooking’. Our model does not learn this answer from the immediate dependency, rather it

learnt it from long term dependency.

We just saw that there is a big difference in the architecture of a typical RNN and a LSTM. In

LSTM, our model learns what information to store in long term memory and what to get rid of.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

45

5.1.5 VISUAL STUDIO CODE

Visual Studio Code is a source-code editor developed by Microsoft for Windows, Linux and

macOS. It includes support for debugging, embedded Git control, syntax highlighting, intelligent

code completion, snippets, and code refactoring. It is also customizable, so users can change the

editor's theme, keyboard shortcuts, and preferences. The source code is free and open source and

released under the permissive MIT License. The compiled binaries are freeware and free for

private or commercial use.

Visual Studio Code is based on Electron, a framework which is used to deploy Node.js applications

for the desktop running on the Blink layout engine. Although it uses the Electron framework, the

software does not use Atom and instead employs the same editor component (codenamed

"Monaco") used in Azure DevOps (formerly called Visual Studio Online and Visual Studio Team

Services).

In the Stack Overflow 2019 Developer Survey, Visual Studio Code was ranked the most popular

developer environment tool, with 50.7% of 87,317 respondents claiming to use it.

Visual Studio Code was announced on April 29, 2015, by Microsoft at the 2015 Build conference.

A Preview build was released shortly thereafter.

On November 18, 2015, Visual Studio Code was released under the MIT License and its source

code posted to GitHub. Extension support was also announced.

On April 14, 2016, Visual Studio Code graduated the public preview stage and was released to

web.

Visual Studio Code is a source code editor that can be used with a variety of programming

languages. Instead of a project system it allows users to open one or more directories, which can

then be saved in workspaces for future reuse. This allows it to operate as a language-agnostic code

editor for any language, contrary to Microsoft Visual Studio which uses the proprietary .sln

solution file and project-specific project files. It supports a number of programming languages and

a set of features that differs per language. Unwanted files and folders can be excluded from the

project tree via the settings. Many of Visual Studio Code features are not exposed through menus

or the user interface, but can be accessed via the command palette.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

46

Visual Studio Code can be extended via plug-ins, available through a central repository. This

includes additions to the editor and language support. A notable feature is the ability to create

extensions that add support for new languages, themes, debuggers, perform static code analysis,

add code linters, using the Language Server Protocol and connect to additional services.

Visual Studio Code includes multiple extensions for FTP, allowing the software to be used as a

free alternative for web development. Code can be synced between the editor and the server,

without downloading any extra software.

Visual Studio Code allows users to set the code page in which the active document is saved, the

newline character for Windows/Linux, and the programming language of the active document.

This allows it to be used on any platform, in any locale, and for any given programming language.

Visual Studio Code has out-of-the-box support for almost every major programming language.

Several are included by default, for example, JavaScript, TypeScript, CSS, and HTML but other

language extensions can be found and downloaded for free from the VS Code Marketplace.

In the 2016 Developers Survey of Stack Overflow, Visual Studio Code ranked #13 among the top

popular development tools, with only 7.2% of the 46,613 respondents using it. However, in the

2019 Developers Survey, Visual Studio Code was ranked #1, with 50.7% of the 87,317

respondents using it.

Visual Studio Code is widely reviewed to be fast and lightweight, and is considered to be flexible

across various domains such as Java, JavaScript, Go, Node.js and even C++.

Visual Studio Code collects usage data and sends it to Microsoft, although this telemetry reporting

can be disabled. The data is shared among Microsoft-controlled affiliates and subsidiaries and with

law enforcement, per the privacy statement. Because of the open-source nature of the app, it is

known exactly what is collected. Up stream’s binary is shipped under a proprietary license.

VSCodium is an alternative binary distribution of the software which uses only the open-source

parts and omits Microsoft’s trademarks and the telemetry component, while remaining fully

functional and compatible in all other regards.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

47

Fig 5.12: VSCode Interface

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

48

5.2 Flow Chart

Fig 5.13: Supervised Learning Flow Chart

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

49

Fig 5.14: Recurrent Neural Network with shared inputs

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

50

Fig 5.15: Recurrent Neural Network with multiple inputs

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

51

5.3 Sample Code

5.3.1 Dependencies to be imported

import numpy

import matplotlib.pyplot as plt

import pandas as pd

import pandas_datareader.data as web

import datetime as dt

import math

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error

5.3.2 Gathering data from yahoo finance

start = dt.datetime(2018,1,29)

end = dt.datetime.today()

stock = 'AAPL' #Id for Apple Inc.

df = web.DataReader(stock,'yahoo',start,end)

data_source = r'C:\Users\saineni\Desktop\Projects\Anaconda\stock

Estimation\Applestock.csv' #input your path

df.to_csv(data_source)

5.3.3 Converting this dataset matrix into an array of values
def create_dataset(dataset, look_back=1):

 dataX,dataY=[],[]

 for i in range(len(dataset)-look_back-1):

 a=dataset[i:(i+look_back),0]

 dataX.append(a) #inputs

 dataY.append(dataset[i+look_back,0])#labels

 return numpy.array(dataX),numpy.array(dataY)

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

52

#Fixing Randoms

numpy.random.seed(7)

#load saved data set

dataframe = pd.read_csv('Applestock.csv', usecols=[1],engine='py

thon', skipfooter=3)

dataset = dataframe.values

dataset=dataset.astype('float32')

5.3.4 Normalizing dataset and splitting
#normalize dataset

scaler = MinMaxScaler(feature_range=(0,1))

dataset = scaler.fit_transform(dataset)

#splitting data sets

splitting_ratio=0.64

train_size = int(len(dataset)*splitting_ratio)

test_size= len(dataset) - train_size

train,test = dataset[0:train_size,:],dataset[train_size:len(data

set),:]

5.3.5 Reshaping the data
#Reshaping

#reshape into x=t and y=t+1

look_back=3

trainX,trainY = create_dataset(train,look_back)

testX, testY = create_dataset(test,look_back)

#reshape input to be [sample,time steps, feature]

trainX= numpy.reshape(trainX,(trainX.shape[0],1,trainX.shape

[1]))

testX = numpy.reshape(testX,(testX.shape[0],1,testX.shape[1]))

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

53

5.3.6 LSTM network for accuracy improvement

#LSTM network for accuracy improvement using keras

model = Sequential()

model.add(LSTM(4,input_shape=(1,look_back)))

model.add(Dense(1))

model.compile(loss='mean_squared_error',optimizer='adam')

model.fit(trainX,trainY,epochs=100,batch_size=1,verbose=2) #epoc

h is a unix timestamp

5.3.7 Making Predictions and improving accuracy
#making predictions

trainPredict = model.predict(trainX)

testPredict = model.predict(testX)

#increasing accuracy

#invert predictions

trainPredict = scaler.inverse_transform(trainPredict)

trainY = scaler.inverse_transform([trainY])

testPredict = scaler.inverse_transform(testPredict)

testY = scaler.inverse_transform([testY])

#calculating RMS error

trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredic

t[:,0]))

print('Train Score: %.2f RMSE' %(trainScore))

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

54

testScore = math.sqrt(mean_squared_error(testY[0], testPredict

[:,0]))

print('Test Score: %.2f RMSE' %(testScore))

#shifting train predictions for plotting

trainPredictPlot = numpy.empty_like(dataset)

trainPredictPlot[:,:] = numpy.nan

trainPredictPlot[look_back:len(trainPredict)+look_back,:] = trai

nPredict

#shift test predictions for plotting

testPredictPlot = numpy.empty_like(dataset)

testPredictPlot[:,:] = numpy.nan

testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-

1,:] = testPredict

5.3.8 Plotting the data
#plotting

accuracy = 1-((trainScore)/(trainScore+testScore))

print(accuracy)

plt.plot(scaler.inverse_transform(dataset))

plt.plot(trainPredictPlot)

plt.plot(testPredictPlot)

plt.show()

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

55

5.4 Screenshots

Fig 5.16: Anaconda Navigator

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

56

Fig 5.17: Apple Inc. stock taken from yahoo finance

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

57

Fig 5.18: Dataset values after fixing random values

Fig 5.19: Normalized Values

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

58

Fig 5.20: Dataset values after applying LSTM Model

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

59

Fig 5.21: Plotted graph for trained vs test sets

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

60

6. Testing

Testing is the process where the test data is prepared and is used for testing the modules

individually and later the validation given for the fields. Then the system testing takes place which

makes sure that all components of the system property functions as a unit. The test data should be

chosen such that it passed through all possible condition. The following is the description of the

testing strategies, which were carried out during the testing period.

6.1 Types of Test

System testing is normally carried out in a planned manner according to the system test plan

document. The system test plan identifies all testing-related activities that must be performed,

specifies the schedule of testing, and allocates resources. It also lists all the test cases and the

expected outputs for each test case. Here the modules are integrated in a planned manner.

6.1.1 FUNCTIONAL TESTING:

Functional testing refers to tests that verify a specific action or function of the code. These are

usually found in the code requirements documentation, although some development

methodologies work from use cases or user stories. Functional tests tend to answer the question

of "can the user do this" or "does this particular feature work". Some examples of functional

testing done in our project:

1. By checking all the Connection modules, it is ensured that connection is success full every time

when its connected.

2. All the modules are ensured to work properly after connection is successful

6.1.2 STRUCTURAL TESTING:

Structural testing is also called White box testing. This means a testing technique whereby explicit

knowledge of the internal workings of the item being tested is used to select the test data. White

box testing uses specific knowledge of programming code to examine outputs. The test is accurate

only if the tester knows what the program is supposed to do. He or she can then see if the program

diverges from its intended goal. White box testing does not account for errors caused by omission,

and all visible code must also be readable.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

61

6.1.3 MODULE TESTING:

To locate errors, each module is tested individually. This enables us to detect error and correct it

without affecting any other modules. Whenever the program is not satisfying the required function,

it must be corrected to get the required result. Thus, all the modules are individually tested from

bottom up starting with the smallest and lowest modules and proceeding to the next level. Each

module in the system is tested separately. For example, the matplotlib module is tested separately.

This module is tested with different sets of data and its approximate execution time and the result

of the test is compared with the results that are prepared manually. Each module in the system is

tested separately. In this system the modules are tested separately and their corresponding results

are obtained which reduces the process waiting time.

6.1.4 INTEGRATION TESTING:

After the module testing, the integration testing is applied. When linking the modules there may

be chance for errors to occur, these errors are corrected by using this testing. In this system all

modules are connected and tested. The testing results are very correct.

6.1.5 SYSTEM TESTING

System testing of software or hardware is testing conducted on a complete, integrated system to

evaluate the system's compliance with its specified requirements. System testing falls within the

scope of black box testing, and as such, should require no knowledge of the inner design of the

code or logic.

As a rule, system testing takes, as its input, all of the "integrated “software components that have

successfully passed integration testing and also the software system itself integrated with any

applicable hardware system(s). The purpose of integration testing is to detect any inconsistencies

between the software units that are integrated together (called assemblages) or between any of the

assemblages and the hardware. System testing is a more limiting type of testing; it seeks to detect

defects both within the "inter-assemblages" and also within the system as a whole.

Usually, software is only one element of a larger computer-based system. Ultimately, software is

interfaced with other software/hardware systems. System Testing is actually a series of different

tests whose sole purpose is to exercise the full computer-based system. That is a very basic

description of what is involved in system testing. You need to build detailed test cases and test

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

62

suites that test each aspect of the application as seen from the outside without looking at the actual

source code. Various commercial and open source tools help QA teams perform and review the

results of system testing. These tools can create, manage and automate tests or test cases, and they

might also offer features beyond system testing, such as requirements management capabilities.

System testing is performed on the entire system in the context of a Functional Requirement

Specification(s) (FRS) and/or a System Requirement Specification (SRS). System testing is an

investigatory testing phase, where the focus is to have almost a destructive attitude and tests not

only the design, but also the behavior and even the believed expectations of the customer. It is also

intended to test up to and beyond the bounds defined in the software/hardware requirements

specification(s).

6.1.6 ACCEPTANCE TESTING

When that user fined no major problems with its accuracy, the system passers through a

final acceptance test. This test confirms that the system needs the original goals, objectives

and requirements established during analysis without actual execution which elimination

wastage of time and money acceptance tests on the shoulders of users and management, it

is finally acceptable and ready for the operation.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

63

6.2 Testing Objectives

Software Testing has different goals and objectives. The major objectives of Software testing are

as follows:

• Finding defects which may get created by the programmer while developing the

software.

• Gaining confidence in and providing information about the level of quality.

• To prevent defects.

• To make sure that the end result meets the business and user requirements.

• To ensure that it satisfies the BRS that is Business Requirement Specification and SRS

that is System Requirement Specifications.

• To gain the confidence of the customers by providing them a quality product.

Software testing helps in finalizing the software application or product against business and user

requirements. It is very important to have good test coverage in order to test the software

application completely and make it sure that it’s performing well and as per the specifications.

While determining the test coverage the test cases should be designed well with maximum

possibilities of finding the errors or bugs. The test cases should be very effective. This objective

can be measured by the number of defects reported per test cases. Higher the number of the defects

reported the more effective are the test cases.

Once the delivery is made to the end users or the customers, they should be able to operate it

without any complaints. In order to make this happen the tester should know as how the customers

are going to use this product and accordingly, they should write down the test scenarios and design

the test cases. This will help a lot in fulfilling all the customer’s requirements.

Software testing makes sure that the testing is being done properly and hence the system is ready

for use. Good coverage means that the testing has been done to cover the various areas like

functionality of the application, compatibility of the application with the OS, hardware and

different types of browsers, performance testing to test the performance of the application and load

testing to make sure that the system is reliable and should not crash or there should not be any

blocking issues. It also determines that the application can be deployed easily to the machine and

without any resistance. Hence the application is easy to install, learn and use.

http://tryqa.com/
http://tryqa.com/what-is-defect-or-bugs-or-faults-in-software-testing/
http://tryqa.com/what-is-software-quality/
http://tryqa.com/what-is-compatibility-testing-in-software/
http://tryqa.com/what-is-performance-testing-in-software/
http://tryqa.com/what-is-load-testing-in-software/
http://tryqa.com/what-is-load-testing-in-software/

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

64

6.3 Test Cases

A test case in software engineering is a set of conditions or variables under which a tester

will determine whether an application or software system is working correctly or not.

Unit Test Cases: The software is being divided into different components and unit testing

is performed on each of these modules. This section is repeated for all components.

Integration Test Cases: Integration testing is a part of stress testing which involves

integrating the components to create a system or sub-system. It may involve testing an

increment to be delivered to the customer. In integration testing, the test team has access

to the system source code. The system is tested as components are integrated.

Validation Test Cases: This testing is done to see whether the integrated software is valid

according to the user needs.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

65

6.4 Test Results

Following table will give us glimpse on the test results

S.no Type of Test Case Result

1 Unit Test Cases SUCCESS

2 Integration Test cases SUCCESS

3 Validation Test cases SUCCESS

Fig 6.1 Test results table

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

66

7. CONCLUSION & FUTURE SCOPE

Now you have proper understanding of how a Recurrent Neural Network works, which enables

you to decide if it is the right algorithm to use for a given Machine Learning problem.

Specifically, you learned what’s the difference between a Feed-Forward Neural Network and a

RNN, when you should use a Recurrent Neural Network, how Backpropagation and

Backpropagation Through Time works, what the main issues of a RNN are and how a LSTM

works.

One of the main challenges is training RNNs is learning long-term dependencies in data. It occurs

generally due to the large number of parameters that need to be optimized during training in RNN

over long periods of time. This paper discusses several architectures and training methods that

have been developed to tackle the problems associated with training of RNNs.

Several regularization methods such as dropout, activation stabilization, and activation

preservation have been adapted for RNNs to avoid overfitting. While these methods have shown

to improve performance, there is no standard for regularizing RNNs. Further research into RNNs

regularization can help introduce potentially better regularization methods.

RNNs have a great potential to learn features from 3- dimensional medical images, such as head

MRI scans, lung computed tomography (CT), and abdominal MRI. In such modalities, the

temporal dependency between images is very important, particularly for cancer detection and

segmentation

The popularity of stock market trading is growing rapidly, which is encouraging researchers to

find out new methods for the prediction using new techniques. The forecasting technique is not

only helping the researchers but it also helps investors and any person dealing with the stock

market. In order to help predict the stock indices, a forecasting model with good accuracy is

required. In this work, we have used one of the most precise forecasting technologies using

Recurrent Neural Network and Long Short-Term Memory unit which helps investors, analysts or

any person interested in investing in the stock market by providing them a good knowledge of the

future situation of the stock market.

FINANCIAL FORECASTING USING RECURRENT NEURAL NETWORK

REFERENCES

[1] P. Enyindah and Onwuachu Uzochukwu C, “A Neural Network Approach to Financial

Forecasting” International Journal of Computer Applications, Vol. 135 – No.8, February 2016,

Page No 28 - 32

[2] https://www.datacamp.com/community/tutorials/lstm-python-stock-market

[3]https://blog.usejournal.com/stock-market-prediction-by-recurrent-neural-network-on-lstm-

model-56de700bff68

[4] https://towardsdatascience.com/recurrent-neural-networks-and-lstm-4b601dd822a5

[5] https://docs.scipy.org/doc/numpy-1.13.0/user/whatisnumpy.html

[6] https://arxiv.org/pdf/1801.01078.pdf

[7] https://en.wikipedia.org/wiki/Scikit-learn

[8] https://keras.io/

[9] https://pandas.pydata.org/pandas-docs/stable/getting_started/overview.html

[10] https://matplotlib.org/

[11] https://towardsdatascience.com/understanding-lstm-and-its-quick-implementation-in-keras-

for-sentiment-analysis-af410fd85b47

